Medical image segmentation (MIS) is essential for supporting disease diagnosis and treatment effect assessment. Despite considerable advances in artificial intelligence (AI) for MIS, clinicians remain skeptical of its utility, maintaining low confidence in such black box systems, with this problem being exacerbated by low generalization for out-of-distribution (OOD) data. To move towards effective clinical utilization, we propose a foundation model named EvidenceCap, which makes the box transparent in a quantifiable way by uncertainty estimation. EvidenceCap not only makes AI visible in regions of uncertainty and OOD data, but also enhances the reliability, robustness, and computational efficiency of MIS. Uncertainty is modeled explicitly through subjective logic theory to gather strong evidence from features. We show the effectiveness of EvidenceCap in three segmentation datasets and apply it to the clinic. Our work sheds light on clinical safe applications and explainable AI, and can contribute towards trustworthiness in the medical domain.
translated by 谷歌翻译
多视图子空间聚类传统上专注于集成异构特征描述以捕获更高维度信息。一种流行的策略是从不同视图生成常见的子空间,然后应用基于图形的方法来处理群集。但是,这些方法的性能仍然受到两个限制,即多视图融合模式以及融合过程与聚类任务之间的连接。为了解决这些问题,我们通过细粒度图形学习提出了一种新的多视图子空间聚类框架,可以在不同视图之间讲述本地结构之间的一致性,并比以前的重量规则更精细地集成所有视图。与文献中的其他模型不同,引入了点级图正规化和频谱聚类的重新介绍,以执行图形融合并将共享集群结构一起学习在一起。在五个真实数据集上进行了广泛的实验,表明该框架对SOTA算法具有可比性。
translated by 谷歌翻译
在本文中,我们提出了一个大型详细的3D面部数据集,FACESCAPE和相应的基准,以评估单视图面部3D重建。通过对FACESCAPE数据进行训练,提出了一种新的算法来预测从单个图像输入的精心索引3D面模型。 FACESCAPE DataSet提供18,760个纹理的3D面,从938个科目捕获,每个纹理和每个特定表达式。 3D模型包含孔径级面部几何形状,也被处理为拓扑均匀化。这些精细的3D面部模型可以表示为用于详细几何的粗糙形状和位移图的3D可线模型。利用大规模和高精度的数据集,进一步提出了一种使用深神经网络学习特定于表达式动态细节的新颖算法。学习的关系是从单个图像输入的3D面预测系统的基础。与以前的方法不同,我们的预测3D模型在不同表达式下具有高度详细的几何形状。我们还使用FACESCAPE数据来生成野外和实验室内基准,以评估最近的单视面重建方法。报告并分析了相机姿势和焦距的尺寸,并提供了忠诚和综合评估,并揭示了新的挑战。前所未有的数据集,基准和代码已被释放到公众以进行研究目的。
translated by 谷歌翻译
基于粒子的系统提供了一种灵活而统一的方法,可以模拟具有复杂动力学的物理系统。大多数现有的基于粒子系统的数据驱动的模拟器采用图形神经网络(GNN)作为网络骨架,因为粒子及其相互作用可以由图节点和图形边缘自然表示。但是,虽然基于粒子的系统通常包含数百千个颗粒,但由于粒子相互作用的数量增加,粒子相互作用的显式建模不可避免地会导致显着的计算开销。因此,在本文中,我们提出了一种基于变压器的新型方法,称为具有隐式边缘(TIE)的变压器,以无边缘方式捕获粒子相互作用的丰富语义。领带的核心思想是将涉及涉及配对粒子相互作用的计算分散到每个颗粒更新中。这是通过调整自我发项式模块以类似于GNN中图表的更新公式来实现的。为了提高领带的概括能力,我们进一步修改了可学习的特定材料的抽象粒子,以将全球材料的语义与本地粒子语义分开。我们评估了不同复杂性和材料不同领域的模型。与现有的基于GNN的方法相比,没有铃铛和哨子,TIE可以在所有这些领域中实现卓越的性能和概括。代码和模型可在https://github.com/ftbabi/tie_eccv2022.git上找到。
translated by 谷歌翻译
经过验证的多模态融合是提高扬声器跟踪的准确性和稳健性的有效方法,尤其是在复杂的情景中。但是,如何结合异构信息并利用多模态信号的互补性仍然是一个具有挑战性的问题。在本文中,我们提出了一种使用音频和视觉方式的扬声器跟踪的新型多模态感知跟踪器(MPT)。具体地,首先构建基于空间全局相干字段(STGCF)的新型声学图以用于异构信号融合,其采用相机模型将音频线索映射到与视觉提示一致的定位空间。然后,引入了多模态感知关注网络以导出测量受噪声干扰的间歇音频和视频流的可靠性和有效性的感知权重。此外,提出了一种独特的跨模式自我监督学习方法,以通过利用不同方式之间的互补性和一致性来模拟音频和视觉观测的置信度。实验结果表明,该拟议的MPT分别在标准和封闭数据集上实现了98.6%和78.3%的跟踪准确性,其在不利条件下展示了其鲁棒性,并且优于目前最先进的方法。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Knowledge graphs (KG) have served as the key component of various natural language processing applications. Commonsense knowledge graphs (CKG) are a special type of KG, where entities and relations are composed of free-form text. However, previous works in KG completion and CKG completion suffer from long-tail relations and newly-added relations which do not have many know triples for training. In light of this, few-shot KG completion (FKGC), which requires the strengths of graph representation learning and few-shot learning, has been proposed to challenge the problem of limited annotated data. In this paper, we comprehensively survey previous attempts on such tasks in the form of a series of methods and applications. Specifically, we first introduce FKGC challenges, commonly used KGs, and CKGs. Then we systematically categorize and summarize existing works in terms of the type of KGs and the methods. Finally, we present applications of FKGC models on prediction tasks in different areas and share our thoughts on future research directions of FKGC.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
Graph Neural Networks (GNNs) have shown satisfying performance on various graph learning tasks. To achieve better fitting capability, most GNNs are with a large number of parameters, which makes these GNNs computationally expensive. Therefore, it is difficult to deploy them onto edge devices with scarce computational resources, e.g., mobile phones and wearable smart devices. Knowledge Distillation (KD) is a common solution to compress GNNs, where a light-weighted model (i.e., the student model) is encouraged to mimic the behavior of a computationally expensive GNN (i.e., the teacher GNN model). Nevertheless, most existing GNN-based KD methods lack fairness consideration. As a consequence, the student model usually inherits and even exaggerates the bias from the teacher GNN. To handle such a problem, we take initial steps towards fair knowledge distillation for GNNs. Specifically, we first formulate a novel problem of fair knowledge distillation for GNN-based teacher-student frameworks. Then we propose a principled framework named RELIANT to mitigate the bias exhibited by the student model. Notably, the design of RELIANT is decoupled from any specific teacher and student model structures, and thus can be easily adapted to various GNN-based KD frameworks. We perform extensive experiments on multiple real-world datasets, which corroborates that RELIANT achieves less biased GNN knowledge distillation while maintaining high prediction utility.
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译